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Abstract: The Distributed Model Predictive Control (DMPC) has been more and more popular
in the control of distributed systems which are composed by many interacted subsystems.
The range of subsystems that each local Model Predictive Control (MPC) optimized, called
coordination degree, plays an important role in improving the optimization performance of entire
closed-loop system. In this paper, the N-step adjacent structure matrix based decomposition
method was proposed, where the coordination degree of each subsystem is determined by the
union of the all the adjacent matrices over the predictive horizon. Based on this decomposition,
each local MPC considers the cost of all the subsystems it impacted on during the predictive
horizon, and then improves the optimization performance of entire system with reduced
communication burdens. The simulation results show the effectiveness of the proposed method.

1. INTRODUCTION

Consider a class of complex large-scale control systems
which is composed of many physically or geographically
divided subsystems. Each subsystem interacts with some
other subsystems by their states and/or inputs. The con-
trol objective is to accomplish a specific global perfor-
mance of the entire system or a common goal of all sub-
systems.

The Distributed Model Predictive Control (DMPC) which
controls each subsystem by a separated local Model Pre-
dictive Control (MPC), has been more and more popular
in the control of this kinds of systems [Moroşan et al.,
2010], since it not only inherits MPC’s advantages of
explicitly accommodating constraints and good dynamic
performance, but also has all the virtues of distributed
framework[Qin and Badgwell, 2003, Maciejowski, 2002,
Sandell Jr et al., 1978, Scattolini, 2009, Leirens et al., 2010,
Christofides et al., 2012, Zheng et al., 2011b, 2013a].

However, the performance of distributed implementation
of MPC, in most of cases, is not as good as that of
centralized MPC. To improve the global performance of
entire closed-loop system, several DMPC coordination s-
trategies appeared in the literatures [Zheng et al., 2009,
Camponogara et al., 2002, Christofides et al., 2012, Zheng
et al., 2013b]. People found that if the subsystems of each
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MPC’s cost function covered, called coordination degree,
increased, the optimization performance of entire system
is improved and the communication burden increases in
most cases [Al-Gherwi et al., 2010]. Specially, if each local
MPC optimizes its own cost function, uses the predic-
tive sequence of its neighbors to estimate the interac-
tions among subsystems [Camponogara et al., 2002], and
employs iterative algorithm, the Nash optimality can be
achieved[Li et al., 2005]. In this strategy, each local con-
troller connects to its neighboring controllers. To farther
improve the global performance, a design method that
each subsystem-based MPC takes not only the perfor-
mance of its corresponding subsystem but also that of
the subsystems it directly impacts on into account in its
optimization index is proposed by [Li et al., 2014, Zheng
et al., 2009]. Experiments and numeric results prove that
this strategy could significantly improve the performance
of entire system with small increasing of network connec-
tivity, each local controller have to connect to the con-
trollers of its neighbours, and its neighbours’s neighbours.
Another useful strategy is that each subsystem optimize
the weighted cost of all subsystems and solves the optimal
solution by parallel iteration. By this method, the Parato
Optimality, the best optimization performance in existing
DMPCs, can be achieved[Stewart et al., 2010, Zheng et al.,
2011a]. However, the global information is required when
solving each subsystem’s optimal solution in this method,
which is not expected. Could we find a method to exactly
define the coordination degree, which is able to make the
resulting DMPC obtains Pareto optimality with reduced
communication burden? This stimulated this study.

In this paper, an N-step Impacted Region Optimization
based DMPC (N-step IRO-DMPC) is proposed, where



the range of each local MPC’s cost function covered is
determined by the union of the all the adjacent matrices
over the predictive horizon. Each local MPC optimized the
cost of all subsystems it impacted on over the prediction
horizon to cooperate with each other. In addition, an
iterative algorithm is developed to resolve each local MPC.
Through these ways, the Parato optimality was achieved
with reduced communication resource comparing to the
global cost optimization based DMPC.

The remainder of this paper is organized as follows. Section
2 describes the problem to be solved in this paper. Section
3 presents the design of the proposed distributed MPC.
Section 4 presents the simulation results to demonstrate
the effectiveness of the proposed method. Finally, a brief
conclusion to the paper is drawn in Section 5.

2. PROBLEM

2.1 Distributed system

A distributed system is composed of many interacting
subsystems, each of which is controlled by an independent
controller, which in turn is able to exchange information
with other controllers.

Suppose that the distributed system S is composed of m
discrete-time linear subsystems Si, i ∈ P = {1, 2, · · · ,m}
and m controllers Ci, i ∈ P. If subsystem Si is directly
affected by Sj , for any i ∈ P and j ∈ P, subsystem Si
is said to be a directly (or one-step) downstream system
of subsystem Sj , and subsystem Sj is a directly (or one-
step) upstream system of Si. Let P+i denote the set of
the subscripts of the one-step upstream systems of Si, P−i
is the set of the subscripts of the one-step downstream
systems of Si. Let the subsystems interact with each other
through their states. Then, subsystem Si can be expressed
as  xi,k+1 = Aiixi,k + Biiui,k +

∑
j∈P+i

Aijxj,k,

yi,k = Ciixi,k,
(1)

where xi ∈ Xi ⊂ Rnxi , ui ∈ Ui ⊂ Rnui and yi ∈
Yi ⊂ Rnyi are respectively the local state, input and
output vectors, and Xi, Ui and Yi are respectively the
feasible set of the state xi, input ui and output yi which
are used to bound the state, input and output according
to the physical constraints on the actuators, the control
requirements or the characteristics of the plant. A non-
zero matrix Aij , j ∈ P+i, indicates that Si is directly
affected by Sj . In the concatenated vector form, the system
dynamics can be written as{

xa,k+1 = Axa,k + Bua,k,
ya,k = Cxa,k,

(2)

where xa = [xT
1 xT

2 · · · xT
m]T ∈ Rnx , ua =

[uT
1 uT

2 · · · uT
m]T ∈ Rnu and ya = [yT

1 yT
2 . . . yT

m]T ∈
Rny are respectively the concatenated state, control input
and output vectors of the overall system S, and A, B and
C are constant matrices of appropriate dimensions. Also,
xa ∈ X = X1×X2×· · ·×Xm, ua ∈ U = U1×U2×· · ·×Um
and ya ∈ Y = Y1 × Y2 × · · · × Ym.

2.2 Control objective

The control objective is to find a control method under
the distributed framework, which could obtain the optimal
solution of entire system with a reduced communication
burden. The performance index of the whole system can
be expressed as

J(k) =
∑
i∈P

Ji(k) (3)

where

Ji(k)=

N∑
l=1

(∥∥Ciixi,k+l|k − ysp
i

∥∥2
Qi,l

+
∥∥∆ui,k+l−1|k

∥∥2
Ri,l

)
,(4)

ysp
i is the set point of the ith subsystem and ∆ui,k+l|k =

ui,k+l|k − ui,k+l−1|k is the input increment of the ith sub-
system at the time instant k. Constant matrix Qi,l,Ri,l >
0, l = 1, 2, . . . , N , is weighting coefficients for the ith

subsystem, and let the weighting matrices for Si be

Qi = block− diag{Qi,1,Qi,2, . . . ,Qi,N} > 0

Ri = block− diag{Ri,1,Ri,2, . . . ,Ri,N} > 0.

3. N-STEP IMPACTED-REGION OPTIMIZATION
BASED DISTRIBUTED MPC

Consider that each local MPC Ci, i ∈ P, only optimize
N (predictive horizon) step ahead performance, thus the
solution of each local MPC only impacts performance of
the subsystems which are interacted with Si during the
predictive horizon. To take this interaction into account, a
strategy that each local MPC optimize its N-step impacted
region’s performance was proposed, and which is detailed
as follows.

3.1 N-step impacted-region

To proceed, we need the following definitions.

Definition 1. Adjacent Matrix: Consider a system xk+1 =
Axk, A ∈ Rnx×nx which is composed of m subsystem,
the adjacent matrix refers to a m ×m matrix Ā, and its
ith, jth element

āij =

{
1, when Aij 6= 0
0, when Aij = 0

(5)

It can be seen from (5) that the adjacent matrix only
reflects the directly interaction among subsystems. In fact,
we usually concern that if one unit indirectly impacts
another unit through some intermediate units. In this case,
the structure matrix corresponding to the k power of Ā can
be used to express the interaction in k step ahead. Then,
following N-Step Accessible Matrix is defined to express
the relationship among subsystem during N step ahead.

Definition 2. N-Step Accessible Matrix: Consider a sys-
tem xk+1 = Axk, A ∈ Rnx×nx , which consists of m unit
Si, i = 1, 2, ...,m, define that each unit Si is accessible to
itself, the all accessible relationship can be described by a
so called N-Step Accessible Matrix R, and

R = I ∪ Ā ∪ Ā2 ∪ . . . ∪ ĀN

It is also a kind of structure matrix, where the ith row and
jth column element equals zero expresses that subsystem



Sj is un-accessible to subsystem Sj . By logic operating
rules, the above equation can be simply rewritten as

R = (I ∪ Ā)N (6)

In fact, for the control of system (1), the relationship
among the states, inputs and outputs are very important.
However, (5) can not exactly reflect this relationship.
Consider that[

xa,k+1

ua,k+1

ya,k

]
=

[
A B 0
0 0 0
C 0 0

][
xa,k

ua,k

ya,k−1

]
, (7)

for system (2), the adjacent matrix can be defined as

Ād =

 Ā B̄ 0
0 0 0
C̄ 0 0

 . (8)

From (6), the N-step Accessible Matrix can be expressed
as

R = (I ∪Ad)
N−1

=

[
Rxx Rxu Rxy

Rux Ruu Ruy

Ryx Ryu Ryy

]

=

 (Ā + I)
N

B̄(Ā + I)
N−1

0
0 I 0

C̄(Ā + I)
N−1

C̄(Ā + I)
N−2

B̄ I

 .

(9)

Thus, the N-step input to output accessible matrix is

Ryu = C̄(Ā + I)
N−2

B̄. (10)

Consider that B̄ is a unit matrix in (10), the N-step
accessible matrix can be redefined as

Ryu = C̄(Ā + I)N−2. (11)

And the N-step down stream neighbour of Si can be
defined as the subsystems Sj where the jth row, and ith

collum element of Ryu equals 1. And denote P−iN as the
set of the subscript of all the N-step downstream neighbor
of Si.

3.2 Distributed MPC design

Consider that the control law of current subsystem Si
effects the performance of its N-step downstream neighbor-
ing subsystems Sj , j ∈ P−iN , in the N-Step IRO-DMPC,
the performance of Sj , j ∈ P−iN is added into the per-
formance index of the MPC which controls Si based on a
approximation of the updated state sequence of Sj . In this
way, the coordination degree is expanded and is equivalent
to that of global cost optimization based DMPC.

The performance of local MPC for subsystem Si is defined
as

J̄i(k) =

N∑
l=1

(∥∥Ciixi,k+l|k − ysp
i

∥∥2
Qi,l

+
∥∥∆ui,k+l−1|k

∥∥2
Ri,l

)
+

∑
j∈P−iN

N∑
l=1

∥∥Cjjx̂j,k+l|k − ysp
j

∥∥2
Qj,l

(12)

Define that x̂i,k+l|k, ûi,k+l|k and ∆ûi,k+l|k be the assumed
states, the assumed input and the assumed input incre-
ment which are calculated in the previous calculation,
respectively.

The predictive model can be expressed as

yi,k+l|k = CiiA
l
iixi,k +

l∑
h=1

CiiA
l−h
ii Biiui,k+h−1|k

+
∑

j∈P+i

l∑
h=1

CiiA
l−h
ii Aijx̂j,k+h−1|k (13)

Consider the physical limitations on the outputs, the input
and the input increment, we can get following optimization
problem for Si in each control period.

Problem 1. For all subsystem Si, i ∈ {1, 2, . . . ,m},
provided that xi,k, x̂j,k+l|k, j ∈ P+h

⋃
P+i, h ∈ P−iN and

∆ûi,k+l−1|k−1,j ∈ P−iN , l = 1, 2, . . . , N ,
find the control sequence ∆ui,k:k+N−1|k, which minimize
the performance index

min
ui,k:k+N−1|k

J̄i(k)

Subject to the constraints:

Equation(13),

yi,L ≤ yi,k+l|k ≤ yi,U , (14)

yj,L ≤ yj,k+l|k ≤ yj,U , j ∈ P−iN , (15)

ui,L ≤ ui,k+l−1|k ≤ ui,U , (16)

∆ui,L ≤ ∆ui,k+l−1|k ≤ ∆ui,U , (17)

l = 1, 2, ..., N ;

||yi,k+N |k − ysp
i ||

2
Qi,N

< ε2. (18)

where, [yi,L,yi,U ], [ui,L,ui,U ] and [∆ui,L,∆ui,U ] are the
bounds of outputs, inputs and the increment of inputs
respectively. Equation (18) is a final constraint for improve
the stability of each subsystem-based MPC, and ε > 0.

To solve problem (1) efficiently, following iterative algo-
rithm is given for ∀Si, i ∈ P.

Algorithm 1. (N-step IRO-DMPC Algorithm).

Step 1: Initialization.

• Initialize xi,k0
, xi,k0+l|k0

, l = 1, 2, . . . , N , which satis-
fy the constraints of Problem 1.

Step 2: Update control law at time k > k0.

• Step 2.1
Set iteration t = 1, and set x̂i,k+l|k = xi,k+l|k−1.

• Step 2.2
Measure xi(k), transmit x̂i,k+l|k to its N-step down
stream neighbors and ûi,k+l|k upstream neighbors;
And receive ûi,k+l|k from its N-step down stream
neighbors and x̂j,k+l|k from its upstream neighbors.

• Step 2.3
Solving Problem 1 to obtain the optimal solution
∆ut

i,k+l|k, and predict the future state xi,k+l|k based

on the solution ∆ut
i,k+l|k.

• Step 2.4
If

||∆ut
i,k+l−1|k −∆ut−1

i,k+l−1|k||
2
2 ≤ ε0 or t > tmax

then set

u∗i,k = ui,k−1 + ∆u∗i,k+l−1|k,
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Fig. 1. Distributed MPC configuration

and goto Step 3; Else set

x̂i,k+l|k = xi,k+l|k, t = t + 1,

and goto Step 2.2.

Step 3: Update control at time k + 1.

• Let k + 1→ k, repeat Step 2.

It should be noticed that although an iterative algorithm
is presented, the Problem 1 can also be solved by a non-
iterative algorithm through setting tmax = 1. Since the
communication burden will increase with the increasing of
iteration, tmax should not be set too large in practice. So
far the N-step impacted-region optimization based DMPC
for distributed system is introduced, some simulation
results will be presented in the next section to show the
effectiveness of the proposed method.

4. SIMULATION

For simplicity, a 9 nodes distributed network is taken
as example, and the relationship among these notes is
shown in Fig. 1 where the arrow from subsystem Si to
Sj expresses that Sj is directly effected by Si.
The dynamic models of these nodes are respectively given
by

S1 :

{
x1,k+1 = 0.57x1,k + 0.38u1,k

y1,k = x1,k,
(19)

S2 :

{
x2,k+1 = 0.53x2,k + 0.38u2,k + 0.16x1,k

+0.16x4,k

y2,k = x2,k,
(20)

S3 :

{
x3,k+1 = 0.55x3,k + 0.38u3,k

y3,k = x3,k,
(21)

S4 :

{
x4,k+1 = 0.61x4,k + 0.39u4,k + 0.18x2,k

+0.18x3,k + 0.18x5,k

y4,k = x4,k,
(22)

S5 :

{
x5,k+1 = 0.68x5,k + 0.42u5,k

y5,k = x5,k,
(23)

S6 :

{
x6,k+1 = 0.55x6,k + 0.38u6,k + 0.16x5,k

y6,k = x6,k,
(24)

S7 :

{
x7,k+1 = 0.71x7,k + 0.42u7,k + 0.21x6,k

+0.21x8,k

y7,k = x7,k,
(25)

S8 :

{
x8,k+1 = 0.57x8,k + 0.38u8,k + 0.17x9,k

y8,k = x8,k,
(26)

S9 :

{
x9,k+1 = 0.66x9,k + 0.41u9,k + 0.20x8,k

y9,k = x9,k.
(27)

According to (11), the N-step accessible matrix is:

Ryu =



1 0 0 0 0 0 0 0 0
1 1 1 1 1 0 0 0 0
0 0 1 0 0 0 0 0 0
1 1 1 1 1 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 1 1 0 0 0
0 0 0 0 1 1 1 1 1
0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 1 1


(28)

From (28) the network connectivity is 15 when using
proposed N-step ICO-DMPC, which is most less than 72
when using global cost optimization based DMPC. The
network connectivity is dramatically deduced.

For the purpose of comparison, both the Centralized
MPC and the N-step IRO-DMPC are applied to this
system. Let the constraint on the input be [ui,L, ui,U] =
[−2, 2] and the constraint on the increment of input be
[∆ui,L,∆ui,U] = [−1.5, 1.5]. Set the all controllers’ (both
centrialized MPC and N-step IRO-DMPC) parameters of
control horizon be N = 10, the weighting matrices be
Qi = [1, 1, 1, 1, 1, 1, 1, 1, 1, 5], Ri = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
where i ∈ {1, 2, ..., 9}.
The state responses and the inputs of the closed-loop
system under the control of the centralized MPC and
LCO-DMPC are shown in Figs. 2 and 3, respectively. The
shape of the state response curves under the control of
N-step IRO-DMPC are almost equals to those under the
Centralized MPC. Under the N-step IRO-DMPC control
design, when set point changed, there is no significant over-
shooting, but some fluctuation exists in the trajectories of
states of the interacting subsystems.

From these simulation results, it can be seen that the
proposed N-step IRO-DMPC could obtain a global per-
formance almost equal to that of using centralized MPC
and the global information is not necessary for every lo-
cal MPC, which keeps the characteristics of good error
tolerance and high flexibility of the Distributed Control
Framework.

5. CONCLUSION

In this paper, an N-step Impact-Region Optimization
based DMPC is provided for distributed systems. The
simulation results of the control of a distributed network
composed by nine first-order systems shows the efficiency
of the proposed method. With the proposed method, the
closed-loop system could obtain a global performance al-
most equivalent to that of with the centralized MPC. In
addtion, the global information is not necessary for each
local MPC in the N-Step IRO-DMPC comparing to the
global cost optimization based DMPC, which could signifi-
cantly deduce the network-connectivity for sparse systems,
increase the capability of error tolerance of control system.
The stabilizing implementation of proposed DMPC sub-
ject to pdecoupled constraints maybe a extension of this
work and will be done in the near future.
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